M1. (a)	34.0	Penalise precision once		1	
	(b)	1.76 mol d	m-3		1	
	(c)	answer to	(b) divided by 0.05 <i>35(.3) on correct figures</i>		1	
		Shows wor	king Correct answer only scores this mark Lose this mark if any units are given for the factor		1	[4]
##						
	(a)	<u>Average/r</u> 1/12 mass	<u>mean mass of (1) atom(s) (of an element)</u> of one atom of ¹²C			
			If moles and atoms mixes Max = 1	1		
		OR				
		<u>(Average) r</u> 1/12 mass	mass of one mole of atoms of one mole of ¹² C			
		OR				
		<u>(Weighted)</u> 1/12 mass	average mass of all the isotopes of one atom of ¹² C			
		OR				
		Average m which an a	ass of an atom/isotope compared to C-12 on a scale in tom of C-12 has a mass of 12 <i>This expression = 2 marks</i>			

(b) d block

> Allow 3d/D Other numbers lose M1 Ignore transition metals

[Ar] 3d ² 4s ²						
						1

Can be written in full Allow subscripts $3d^2$ and $4s^2$ can be in either order

27

 $\frac{(90 \times 9) + (91 \times 2) + (92 \times 3) + (94 \times 3)}{17}$ (c)

(= 1550)

1

1

	、		1
	(or ∑ their a	abundances)	
		If one graph reading error lose M1 and allow consequential	
		If 2 GR errors penalise M1 and M2 but allow consequential M3	
		If not 17 or \sum their abundances lose M2 and M3	1
	= 91.2		
		91.2 = 3 marks provided working shown.	1
	Zr/Zirconiu	m	
		M4 -allow nearest consequential element from M3 accept Zr in any circumstance	1
			1
(d)	High energ	gy electrons/bombarded or hit with electrons	
		accept electron gun	1
	knocks out	electron(s) (to form ions)	1
			1
	Z⁺ = <u>90</u> def	lected most	
		If not 90 lose M3 and M4 If charge is wrong on 90 isotope lose M3 only Accept any symbol in place of Z	

		1	
	since lowest mass/lowest m/z Allow lightest	1	
(e)	(ions hit detector and) cause current/(ions) accept electrons/cause electron flow <i>QWC</i>	1	
	bigger current = more of that isotope/current proportional to abundance Implication that current depends on the number of ions	1	[15]

M3.	(a)	 (i) (free–)radical substitution (both words required for the mark) 	4
	(ii)	uv light OR sunlight OR <u>high</u> temperature OR 150 °C to 500 °C	1
	(iii)	Propagation (ignore "chain", "first", "second" in front of the word propagation)	1
	(iv)	Termination •CH ₂ CH ₃ + Br• \longrightarrow CH ₃ CH ₂ Br OR 2•CH ₂ CH ₃ \longrightarrow C ₄ H ₁₀ (penalise if radical dot is obviously on CH ₃ , but not otherwise) (penalise C ₂ H ₅ •) (and dit OBr	1
		(creait 2Br•——► Br₂) (ignore "chain" in front of the word termination)	1

(b) (i) <u>Fractional</u> distillation OR fractionation

		(credit gas–liquid chromatography, GLC)	1
	(ii)	$CH_{3}CH_{3} + 6Br_{2} \longrightarrow C_{2}Br_{6} + 6HBr$ (credit $C_{2}H_{6}$ for ethane)	1
(c)	Corr	ect structure for CF₂BrCF₂Br drawn out (penalise "FI" for fluorine)	1
(d)	(i)	2–bromo–2–chloro–1,1,1–trifluoroethane OR 1–bromo–1–chloro–2,2,2–trifluoroethane (insist on <u>all</u> numbers, but do not penalise failure to use alphabet) (accept "flourine" and "cloro" in this instance)	1
	(ii)	197.4 only (ignore units)	1
	(iii)	 (57/197.4 × 100) = 28.9% OR 28.88% (credit the correct answer independently in part (d)(iii), even if (d)(ii) is blank or incorrectly calculated, but mark <u>consequential on part (d)(ii)</u>, if part (d)(ii) is incorrectly calculated, accepting answers to 3sf or 4sf only) (penalise 29% if it appears alone, but not if it follows a correct answer) (do not insist on the % sign being given) (the percentage sign is not essential here, but penalise the use of units e.g. grams) 	1

M4.

(a) (i) <u>Average/mean mass of 1 atom (of an element);</u> <u>Average mass of 1 atom × 12.</u>

1

[11]

Mass 1/12 atom of ¹²C; Mass 1 atom of ¹²C. QWC.

	(ii)	Other isotope = 46.0%;
		$107.9 = \frac{(54 \times 107.1) + (46 \times ?)}{100};$ M2 whole expression. 108.8; Answer 108.8 (3 marks). Answer min 1 d.p Same electronic configuration/ same number of electrons (in outer shell)/ both have 47 electrons; Ignore protons and neutrons unless incorrect. Not just electrons determine chemical properties.
(b)	Ionis	ation;
	high	energy electrons fired at sample; Allow electron gun /blasted with electrons.
	Acce	eleration;
	With	n electric field/accelerating potential/potential difference; Allow by negative plate.
	Defl	ection;
	With	n electromagnet/ magnet/ magnetic field; M2 dependent on M1. M4 dependent on M3. M6 dependent on M5.
(c)	(Silve	er) metallic (bonding); <i>Vdw/molecules CE=0.</i>

1

1

1

1

1

1

1

1

1

1

1

1

	Regular arrangement of same sized particles;	1	
	+ charge in each ion; Ignore multiple positive charges. Candidates do not need to show delocalised electrons.	1	
(d)	Ionic (bonds);	1	
	Minimum 4 ions shown in 2D square arrangement placed Correctly; Do not allow multiple charges on ions.	1	
	Further 3 ions shown correctly in a cubic lattice;	1	
	Strong (electrostatic) forces/bonds; If vdw/molecules/covalent mentioned CE = 0 for M4 and M5.	1	
	Between <u>+ and – ions;</u> Accept between <u>oppositely charged ions</u> .	1	[20]